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Introduction
For regular systems there existN number of constants
of motion in involution to each other forN d.f.
systems.
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Introduction
For regular systems there existN number of constants
of motion in involution to each other forN d.f.
systems.

Thus each of the stationary states are labeled by good
quantum numbers.

The classical motion is periodic or quasiperiodic in
phase space. Thus even in semiclassial level system
can be quantized using generalised Bohr-Sommerfeld
scheme.

But such methods collapse for chaotic systems where
the motion is exponentially sensitive to initial
conditions and thus lose long time correlation.
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Introduction
For regular systems there existN number of constants
of motion in involution to each other forN d.f.
systems.

Thus each of the stationary states are labeled by good
quantum numbers.

The classical motion is periodic or quasiperiodic in
phase space. Thus even in semiclassial level system
can be quantized using generalised Bohr-Sommerfeld
scheme.

Thus new approach is required to tackle this problem.
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Density of States
The density of statesρ(E) of a quantum mechanical
system : Number of stationary states per unit interval
of energyE around some value ofE
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Density of States
The density of statesρ(E) of a quantum mechanical
system : En being the energy eigenvalue of then’th
stationary state,

ρ(E) =
∑

n

δ(E − En)

=
∑

n

lim
ǫ→0

ǫ/π

(E − En)2 + ǫ2

= lim
ǫ→0

ℑ

(

∑

n

1/π

(E − En) + iǫ

)

≈ ℑ

[

1

π
Tr

(

1

E − Ĥ

)]
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Green’s Function
The quantum mechanical Green’s functionG(q, q′, E)
is given by :

G(q, q′, E) = 〈q| Ĝ(E) |q′〉 ,

where,
(E − Ĥ)Ĝ = Î

i.e.

[E −H(q, ∂/∂q)]G(q, q′, E) = δ(q − q′)
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Green’s Function
The quantum mechanical Green’s functionG(q, q′, E)
is given by :

Ĝ =
1

E − Ĥ
=
∑

n

|φn〉 〈φn|

E − En

where,|φn〉 representsn’th stationary state.
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Green’s Function
The quantum mechanical Green’s functionG(q, q′, E)
is given by :

Ĝ =
1

E − Ĥ
=
∑

n

|φn〉 〈φn|

E − En

TrĜ = Tr

(

1

E − Ĥ

)

=

∫

G(q, q, E)dq
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Green’s Function
The quantum mechanical Green’s functionG(q, q′, E)
is given by :

Ĝ =
1

E − Ĥ
=
∑

n

|φn〉 〈φn|

E − En

TrĜ = Tr

(

1

E − Ĥ

)

=

∫

G(q, q, E)dq

Thus,

ρ(E) = ℑ

[

1

π

∫

G(q, q, E)dq

]
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Feynman Propagator
Feynman propagator for a quantum system may
defined by the equation :

(

i~
∂

∂t
− Ĥ

)

K(q, q′, t) = −i~δ(t)δ(q − q′)
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Feynman Propagator
Feynman propagator for a quantum system may
defined by the equation :

(

i~
∂

∂t
− Ĥ

)

K(q, q′, t) = −i~δ(t)δ(q − q′)

Multiplying both sides byi
~
exp(iEt/~) and then

integrating with respect tot, we get,

[E −H(q, ∂/∂q)] g(q, q′, E) = δ(q − q′)
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Feynman Propagator
Feynman propagator for a quantum system may
defined by the equation :

(

i~
∂

∂t
− Ĥ

)

K(q, q′, t) = −i~δ(t)δ(q − q′)

Thus,

g(q, q′, E) =
i

~

∫

K(q, q′, t) exp(iEt/~)dt,

is nothing butG(q, q′, E) already discussed
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Feynman Propagator
Feynman propagator for a quantum system may
defined by the equation :

(

i~
∂

∂t
− Ĥ

)

K(q, q′, t) = −i~δ(t)δ(q − q′)

Thus,

g(q, q′, E) =
i

~

∫

K(q, q′, t) exp(iEt/~)dt,

K(q, q′, t) = 〈q|Θ(t) exp

(

−
iĤt

~

)

|q′〉

whereΘ(t) is Heaviside step function.
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Integral Formulation
For very small time intervalt,

K(qB, qA, t) =

(

1

2πi~

)d/2 ∣
∣

∣

∣

−
∂2WBA

∂qA∂qB

∣

∣

∣

∣

1/2

exp

(

i

~
WBA

)

where

WBA =

∫ t

0

Ldt
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Integral Formulation
For large time interval, it is divided into an infinite
number of subintervals and then integrated over all
possible paths betweenqA andqB to get

K(qB, qA, t) = lim
N→∞

(

1

2πi~

)Nd/2 ∫

dq1 . . . dqN−1

×

∣

∣

∣

∣

∣

∏

i

Di,i+1

∣

∣

∣

∣

∣

1/2

exp

(

i

~

∑

i

Wi,i+1

)

Green’s Functions in Quantum Chaos – p. 6/12



Integral Formulation
For large time interval, it is divided into an infinite
number of subintervals and then integrated over all
possible paths betweenqA andqB to get

K(qB, qA, t) = lim
N→∞

(

1

2πi~

)Nd/2 ∫

dq1 . . . dqN−1

×

∣

∣

∣

∣

∣

∏

i

Di,i+1

∣

∣

∣

∣

∣

1/2

exp

(

i

~

∑

i

Wi,i+1

)

qA

qB

i

qi
qi+1

Green’s Functions in Quantum Chaos – p. 6/12



Integral Formulation
For large time interval, it is divided into an infinite
number of subintervals and then integrated over all
possible paths betweenqA andqB to get

K(qB, qA, t) = lim
N→∞

(

1

2πi~

)Nd/2 ∫

dq1 . . . dqN−1

×

∣

∣

∣

∣

∣

∏

i

Di,i+1

∣

∣

∣

∣

∣

1/2

exp

(

i

~

∑

i

Wi,i+1

)

This integral can be simplified using semiclassical
approximation.
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Roadmap

semiclassical
propagator

semiclassical
Green’s Function

Density of

States

Fourier Transform

Tracing out

Green’s Functions in Quantum Chaos – p. 7/12



Semiclassical Propagator
Semiclassical approximation holds when~ is much
much smaller in comparison withWi,i+1 so that the
contribution to the integral comes only when
δ(
∑

iWi,i+1) = 0.
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Semiclassical Propagator
This approximation effectively means contribution
comes from the path for whichδWAB = δ

∫ t

0
Ldt = 0

i.e. from the classically allowed paths.
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Semiclassical Propagator
This approximation effectively means contribution
comes from the path for whichδWAB = δ

∫ t

0
Ldt = 0

i.e. from the classically allowed paths. Under this
condition using statianary phase approximation,

K(qB, qA, t) =

(

1

2πı~

)

∑

r

| DBA,r |
1/2

× exp
( ı

~
WBA,r(t)− ı

νrπ

2

)

;
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Semiclassical Green’s Function
Now taking Fourier transform of this propagator, we
get thesemiclassical Green’s functioni.e.,

GSC(qA, qB, E) =
i

~

∫

K(qB, qA, t) exp(iEt/~)dt,

Using stationary phase approximation,
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Semiclassical Green’s Function
Using stationary phase approximation,

GSC(qA, qB, E) = −
ı̇

~

(

1

2π~

)
d−1

2 ∑

r

| ∆BA,r |
1

2

× exp

[

ı̇

~
Sr(qA, qB, E)− ı

νrπ

2

]

;
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Semiclassical Green’s Function
Using stationary phase approximation,

GSC(qA, qB, E) = −
ı̇

~

(

1

2π~

)
d−1

2 ∑

r

| ∆BA,r |
1

2

× exp

[

ı̇

~
Sr(qA, qB, E)− ı

νrπ

2

]

;

where

| ∆BA,r |=
| DBA,r |

| ∂2WBA/∂t2 |
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Density of States
Hence

ρ(E) = ℑ

[

1

π

∫

GSC(q, q, E)dq

]
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Density of States
Again using stationary phase approximation,which
demands for contributing paths,

pA|q = pB|q,

i.e. only periodic orbits contribute in the integral.
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Density of States
Again using stationary phase approximation,which
demands for contributing paths,

pA|q = pB|q,

i.e. only periodic orbits contribute in the integral.
Thus,

ρ(E) =
1

π
ℑ

[
∫

GSC(q, q, E)d~q

]

=
1

π~

∑

r

(Tp)r
||Mr − 1||1/2

cos

[

Sr(E)

~
−

µrπ

2

]

.

This is called Gutzwiller Trace formula.
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END

OK, it’s over! Thank you!
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