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Motivation
 Queues are a standard mechanism for ordering tasks 

on a first-come, first-served basis
 However, some tasks may be more important or 

timely than others (higher priority)
 Priority queues Priority queues

 Store tasks using a partial ordering based on priority
 Ensure highest priority task at head of queue

 Heaps are the underlying data structure of priority 
queues
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Priority Queues: Specification
 Main operations

 insert (i.e., enqueue)
D i i t Dynamic insert

 specification of a priority level (0-high, 1,2.. Low)
 deleteMin (i.e., dequeue)

 Finds the current minimum element (read: “highest priority”) in 
the queue, deletes it from the queue, and returns it

 Performance goal is for operations to be “fast”
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Using priority queues
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insert()

deleteMin()

2
Dequeues the next element 
with the highest prioritywith the highest priority
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Can we build a data structure better suited to store and retrieve priorities?

Simple Implementations
 Unordered linked list

 O(1) insert
 O(n) deleteMin

5 2 10 3…

 O(n) deleteMin
 Ordered linked list

 O(n) insert
O(1) d l t Mi

2 3 5 10…

 O(1) deleteMin
 Ordered array

 O(lg n + n) insert

2 3 5 … 10

 O(n) deleteMin
 Balanced BST

 O(log2n) insert and deleteMin O(log2n) insert and deleteMin
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Bi HBinary Heap

A priority queue data structure
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Binary Heap

 A binary heap is a binary tree with two 
propertiesproperties
 Structure property
 Heap-order property Heap order property
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Structure Property

 A binary heap is a complete binary tree
 Each level (except possibly the bottom most level) ( p p y )

is completely filled
 The bottom most level may be partially filled 

(f l ft t i ht)(from left to right)

 Height of a complete binary tree with N 
elements is  N2log
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Structure property

Binary Heap Example

N=10

Every level 
(except last) 
saturated

Array representation:
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Heap-order Property

 Heap-order property (for a “MinHeap”)
 For every node X key(parent(X)) ≤ key(X) For every node X, key(parent(X)) ≤ key(X)
 Except root node, which has no parent

Thus minimum key always at root Thus, minimum key always at root
 Alternatively, for a “MaxHeap”, always 

keep the maximum key at the rootkeep the maximum key at the root

 Insert and deleteMin must maintain 
heap order propertyheap-order property
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Heap Order Property
Minimum 
element 

   

   

 Duplicates are allowed

  

 Duplicates are allowed
 No order implied for elements which do not 

share ancestor-descendant relationshipshare ancestor descendant relationship
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Implementing Complete 
Binary Trees as Arrays

 Given element at position i in the array
 Left child(i) = at position 2i Left child(i)  at position 2i
 Right child(i) = at position 2i + 1
 Parent(i) = at position  2/i Parent(i) = at position  2/i

2i

2i + 1

i

i/2

12

i/2
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Just finds the Min

insert

Just finds the Min 
without deleting it

deleteMin

Note: a general delete()
function is not as important 
for heaps
but could be implemented

Stores the heap as 
a vector

Fix heap after 

13

p
deleteMin
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Heap Insert

 Insert new element into the heap at the 
next available slot (“hole”)next available slot ( hole )
 According to maintaining a complete binary 

tree

 Then, “percolate” the element up the 
heap while heap-order property notheap while heap order property not 
satisfied
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Percolating Up

Heap Insert: Example

Insert 14:

hole14
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Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

hole

14

14
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Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

(2)
hole

14

14
(2)

14 vs. 21

14

1717Cpt S 223. School of EECS, WSU



Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

hole14
(2)

(3)
14 13

Heap order prop
St t

14

(2)
14 vs. 21

14 vs. 13 Structure prop

Path of percolation up

18
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Heap Insert: Implementation
// assume array implementation
void insert( const Comparable &x) {
??
}
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Heap Insert: Implementation

O(log N) timeO(log N) time
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Heap DeleteMin

 Minimum element is always at the root
 Heap decreases by one in size Heap decreases by one in size
 Move last element into hole at root

l d h l h d Percolate down while heap-order 
property not satisfied
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Percolating down…

Heap DeleteMin: Example

Make this 
position 
empty
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Percolating down…

Heap DeleteMin: Example

Copy 31 temporarily
here and move it dow

Is 31 > min(14,16)?
•Yes - swap 31 with min(14,16)

Make this 
position 
empty
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Percolating down…

Heap DeleteMin: Example

31

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)
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Percolating down…

Heap DeleteMin: Example

31

31

Is 31 > min(65,26)?
•Yes - swap 31 with min(65,26)

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)

25
Percolating down…
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Percolating down…

Heap DeleteMin: Example

31

26
Percolating down…
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Percolating down…

Heap DeleteMin: Example

31

Heap order prop
Structure prop

27

Structure prop
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Heap DeleteMin: 
Implementation

28

O(log N) time
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Heap DeleteMin: 
Implementation

Percolate 

Left child

down

Right child

Pick child to 
swap with
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Other Heap Operations
 decreaseKey(p,v)

 Lowers the current value of item p to new priority value v
 Need to percolate upp p
 E.g., promote a job

 increaseKey(p,v)
 Increases the current value of item p to new priority value vp p y
 Need to percolate down
 E.g., demote a job

 remove(p) Run-times for all three functions?(p)
 First, decreaseKey(p,-∞)
 Then, deleteMin
 E.g., abort/cancel a job

O(lg n) 
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Improving Heap Insert Time

 What if all N elements are all available 
upfront?

 To build a heap with N elements:p
 Default method takes O(N lg N) time
 We will now see a new method called buildHeap() 

h ll k ( ) lthat will take O(N) time - i.e., optimal
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Building a Heap

 Construct heap from initial set of N items
 Solution 1

 Perform N inserts
 O(N log2 N) worst-case

 Solution 2 (use buildHeap())
 Randomly populate initial heap with structure 

property
 Perform a percolate-down from each internal node 

(H[size/2] to H[1])(H[size/2] to H[1])
 To take care of heap order property
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BuildHeap Example
I { 150 80 40 10 70 110 30 120 140 60 50 130 100 20 90 }Input: { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 }

Leaves are allLeaves are all 
valid heaps 
(implicitly)

• Arbitrarily assign elements to heap nodes
• Structure property satisfied
• Heap order property violated 

So, let us look at each 
internal node,
from bottom to top, 
and fix if necessary

33

p p p y
• Leaves are all valid heaps (implicit)

and fix if necessary
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BuildHeap Example
Swap 

Nothing 
to do

with left 
child

• Randomly initialized heap

34

y p
• Structure property satisfied
• Heap order property violated 
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BuildHeap Example Swap 
with right 

childNothing 
to do

Dotted lines show path of percolating down

35

p p g
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Swap with 

BuildHeap Example
Nothing

p
right child

& then with 60

Nothing 
to do

Dotted lines show path of percolating down

36
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BuildHeap Example

Swap path

Dotted lines show path of percolating down

Final Heap

37

p p g
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BuildHeap Implementation

Start with 
lowest, 
rightmost 
i l d

38

internal node
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BuildHeap() : Run-time 
Analysis
 Run-time = ?

 O(sum of the heights of all the internal nodes)
b h t l t ll thbecause we may have to percolate all the way 
down to fix every internal node in the worst-case

 Theorem 6.1 HOW?

 For a perfect binary tree of height h, the sum of 
heights of all nodes is 2h+1 – 1 – (h + 1)

Si h l N th f h i ht i O(N) Since h=lg N, then sum of heights is O(N)
 Will be slightly better in practice

Implication: Each insertion costs O(1) amortized time
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Binary Heap Operations
Worst-case Analysis

 Height of heap is 
 insert: O(lg N) for each insert

 N2log
( g )

 In practice, expect less

 buildHeap insert: O(N) for N insertsp ( )
 deleteMin: O(lg N)
 decreaseKey: O(lg N)decreaseKey: O(lg N)
 increaseKey: O(lg N)
 remove: O(lg N) remove: O(lg N)
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Applications

 Operating system scheduling
 Process jobs by priority Process jobs by priority

 Graph algorithms
Find shortest path Find shortest path

 Event simulation
 Instead of checking for events at each time 

click, look up next event to happen
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An Application: 
The Selection Problem

 Given a list of n elements, find the kth

smallest element

 Algorithm 1:Algorithm 1:
 Sort the list => O(n log n)
 Pick the kth element  => O(1) ( )

 A better algorithm:
 Use a binary heap (minheap)Use a binary heap (minheap)
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Selection using a MinHeap

 Input: n elements
 Algorithm:

b ildHeap(n) > O(n)1. buildHeap(n)   ==> O(n)
2. Perform k deleteMin() operations ==> O(k log n)
3. Report the kth deleteMin output ==> O(1)

Total run-time = O(n + k log n)

If k = O(n/log n) then the run-time becomes O(n)
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Other Types of Heaps
 Binomial Heaps

d H d-Heaps
 Generalization of binary heaps (ie., 2-Heaps)

 Leftist Heaps
 Supports merging of two heaps in o(m+n) time (ie., sub-

linear)
 Skew Heaps

 O(log n) amortized run-time

 Fibonacci Heaps
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Run-time Per Operation
Insert DeleteMin Merge (=H1+H2)

Binary heap  O(log n) worst-case  O(log n) O(n)
 O(1) amortized for 
buildHeap

Leftist Heap O(log n) O(log n) O(log n)

Skew Heap O(log n) O(log n) O(log n)

Bi i l O(l ) t O(l ) O(l )Binomial 
Heap

 O(log n) worst case
 O(1) amortized for 
sequence of n inserts

O(log n) O(log n)

Fibonacci Heap O(1) O(log n) O(1)
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Priority Queues in STL

 Uses Binary heap
 Default is MaxHeap

#include <priority_queue>
int main ()p

 Methods
 Push, top, pop, 

{
priority_queue<int> Q;
Q.push (10);
cout << Q top ();, p, p p,

empty, clear
cout << Q.top ();
Q.pop ();

}
Calls DeleteMax()

For MinHeap: declare priority_queue as:
priority_queue<int, vector<int>, greater<int>>  Q;

47

Refer to Book Chapter 6, Fig 6.57 for an example
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Binomial Heaps

48Cpt S 223. School of EECS, WSU



Binomial Heap
 A binomial heap is a forest of heap-ordered 

binomial trees, satisfying:
i) Structure property andi) Structure property, and
ii) Heap order property

 A binomial heap is different from binary heap 
in that:
 Its structure property is totally different Its structure property is totally different
 Its heap-order property (within each binomial 

tree) is the same as in a binary heap
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Note: A binomial tree need not be a binary tree

Definition: A “Binomial Tree” Bk

 A binomial tree of height k is called Bk:
 It has 2k nodes
 The number of nodes at depth d = (  )k

d

( ) is the form of the co-efficients in binomial theoremk( ) is the form of the co-efficients in binomial theorem d

d 0 ( 3 )
Depth: #nodes:B3:

d=0
d=1
d=2

(0 )
( 3

1 )
( 3 )d=2

d=3
(2 )
( 3

3 )
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What will a Binomial Heap with n=31What will a Binomial Heap with n 31 
nodes look like?

 We know that: 
i) A binomial heap should be a forest of binomial 

trees
ii) Each binomial tree has power of 2 elements

S h bi i l d d?

31 (1 1 1 1 1)
B0B1B2B3B4

 So how many binomial trees do we need?

n = 31 = (1 1 1 1 1)2
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A Bi i l H / 31 dA Binomial Heap w/ n=31 nodes
B0B1B2B3B4

n = 31 = (1 1 1 1 1)2

B0B1B2B3B4

Bi == Bi-1 + Bi-1

1, 
B

2, 
B

3, 
B

4
}

B2B3

B1
B0

tre
es

 {B
0, 

B
1

B2B3

st
 o

f b
in

om
ia

l 
Fo

re
s
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Binomial Heap Property
 Lemma: There exists a binomial heap for every 

positive value of n

 Proof:
 All values of n can be represented in binary representation All values of n can be represented in binary representation

 Have one binomial tree for each power of two with co-efficient 
of 1

 Eg., n=10 ==> (1010)2 ==> forest contains {B3, B1} Eg., n 10 > (1010)2 > forest contains {B3, B1} 
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Binomial Heaps: Heap-Order 
Property
 Each binomial tree should contain the 

minimum element at the root of every y
subtree 
 Just like binary heap, except that the tree 

h i bi i l t t t ( d there is a binomial tree structure (and not a 
complete binary tree)

 The order of elements across binomial 
trees is irrelevanttrees is irrelevant
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Definition: Binomial Heaps
 A binomial heap of n nodes is:

 (Structure Property) A forest of binomial trees as dictated by 
the binary representation of nthe binary representation of n

 (Heap-Order Property) Each binomial tree is a min-heap or a 
hmax-heap
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Binomial Heaps: Examples

Two different heaps:
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Key Properties
 Could there be multiple trees of the same height in a 

binomial heap?
no

 What is the upper bound on the number of binomial 
trees in a binomial heap of n nodes? ltrees in a binomial heap of n nodes? lg n

 Given n, can we tell (for sure) if Bk exists?

Bk exists if and only if:k y
the kth least significant bit is 1
in the binary representation of n
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An Implementation of a Binomial Heapp p

Example: n=13 == (1101)

Maintain a linked list of 
tree pointers (for the forest)

B0B1B2B3B4B5B6B7

Example: n=13  == (1101)2

Shown using the 
left child right sibling pointer method

Analogous to a bit-based representation of a 

left-child, right-sibling pointer method

g p
binary number n
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Binomial Heap: Operations

 x <= DeleteMin()

 Insert(x)

 Merge(H1, H2)
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DeleteMin()

 Goal: Given a binomial heap, H, find the 
minimum and delete it

 Observation: The root of each binomial tree 
in H contains its minimum element

 Approach: Therefore, return the minimum of 
all the roots (minimums)

 Complexity: O(log n) comparisons
(because there are only O(log n) trees)
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FindMin() & DeleteMin() Example

B0 B2
B3

B1’ B2’B0’

For DeleteMin(): After delete, how to adjust the heap?

New Heap : Merge { B B } & { B ’ B ’ B ’ }New Heap : Merge { B0, B2 } & { B0 , B1 , B2  }
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Insert(x) in Binomial Heap 

 Goal: To insert a new element x into a 
binomial heap Hbinomial heap H

 Observation:
Element x can be viewed as a single Element x can be viewed as a single 
element binomial heap
 => Insert (H x) == Merge(H, {x}) > Insert (H,x)  Merge(H, {x})

So, if we decide how to do merge we will automatically 
figure out how to implement both insert() and deleteMin()
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Merge(H1,H2)
 Let n1 be the number of nodes in H1
 Let n2 be the number of nodes in H2
 Therefore the new heap is going to have n + n Therefore, the new heap is going to have n1 + n2

nodes
 Assume n = n1 + n2

 Logic:
 Merge trees of same height, starting from lowest height 

treestrees
 If only one tree of a given height, then just copy that
 Otherwise, need to do carryover (just like adding two binary 

numbers)
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Idea: merge tree of same heights

Merge: Example

+

B0 B1 B2
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How to Merge Two Binomial 
Trees of the Same Height?

+
B2:

B2: B3:

Simply compare the roots

Note: Merge is defined for only binomial trees with the same height 65Cpt S 223. School of EECS, WSU



Merge(H H ) exampleMerge(H1,H2) example
carryover

+

13 14

16

?

26 16

26
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How to Merge more than twog
binomial trees of the same height?

 Merging more than 2 binomial trees of 
the same height could generate carry-g g y
overs

+ +
14

?+
26 16

26

?

Merge any two and leave the third as carry-overMerge any two and leave the third as carry over
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Input:

+

Merge(H1,H2) : Example

Output:

There are t o other possible ans ersThere are two other possible answers

Merge cost log(max{n1 n2}) = O(log n) comparisonsMerge cost      log(max{n1,n2}) = O(log n) comparisons
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Run-time Complexities
 Merge takes O(log n) comparisons

 Corollary: Corollary:
 Insert and DeleteMin also take O(log n)

 It can be further proved that an uninterrupted sequence of m It can be further proved that an uninterrupted sequence of m
Insert operations takes only O(m) time per operation, implying 
O(1) amortize time per insert 
 Proof Hint:

 For each insertion, if i is the least significant bit position with a 0, then 
number of comparisons required to do the next insert is i+1

 If you count the #bit flips for each insert, going from insert of the first 
element to the insert of the last (nth) element, then 

> amortized run time of O(1) per insert10010111
affected

unaffected

=> amortized run-time of O(1) per insert10010111
1

--------------
10011000
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Binomial Queue Run-time 
Summary
 Insert

 O(lg n) worst-case
 O(1) amortized time if insertion is done in an 

uninterrupted sequence (i.e., without being 
intervened by deleteMins)

 DeleteMin, FindMin
 O(lg n) worst-case

 Merge
 O(lg n) worst-case
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Run-time Per Operation
Insert DeleteMin Merge (=H1+H2)

Binary heap  O(log n) worst-case  O(log n) O(n)
 O(1) amortized for 
buildHeap

Leftist Heap O(log n) O(log n) O(log n)

Skew Heap O(log n) O(log n) O(log n)

Bi i l O(l ) t O(l ) O(l )Binomial 
Heap

 O(log n) worst case
 O(1) amortized for 
sequence of n inserts

O(log n) O(log n)

Fibonacci Heap O(1) O(log n) O(1)
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Summary

 Priority queues maintain the minimum 
or maximum element of a setor maximum element of a set

 Support O(log N) operations worst-case
insert deleteMin merge insert, deleteMin, merge

 Many applications in support of other 
l ithalgorithms
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