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i Motivation

= Queues are a standard mechanism for ordering tasks
on a first-come, first-served basis

= However, some tasks may be more important or
timely than others (higher priority)
= Priority gueues
= Store tasks using a partial ordering based on priority
= Ensure highest priority task at head of queue

= Heaps are the underlying data structure of priority
queues
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i Priority Queues: Specification

= Main operations
=« Insert (i.e., enqueue)
= Dynamic insert
= Specification of a priority level (0-high, 1,2.. Low)
« deleteMin (i.e., dequeue)

= Finds the current minimum element (read: “highest priority”) in
the queue, deletes it from the queue, and returns it

= Performance goal is for operations to be “fast”
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i Using priority queues

4
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l insert()

deleteMin()

Dequeues the next element
with the highest priority
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‘L Simple Implementations

s Unordered linked list —[ 5

= O(1) insert
= O(n) deleteMin

s Ordered linked list 2

= O(n) insert
= O(1) deleteMin

—Pp

2

-

10

10

= Ordered array

10

= O(lg n + n) insert
= O(n) deleteMin

= Balanced BST
= O(log,n) insert and deleteMin
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¥

Binary Heap

A priority queue data structure
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i Binary Heap

= A binary heap is a binary tree with two
properties
= Structure property
= Heap-order property
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i Structure Property

= A binary heap is a complete binary tree

= Each level (except possibly the bottom most level)
is completely filled

= The bottom most level may be partially filled
(from left to right)

= Height of a complete binary tree with N
elements is |log, N |
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Structure property

Binary Heap Example

Array representation:
A|B|C|D|E|F |G| H]I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13
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i Heap-order Property

= Heap-order property (for a “MinHeap™)
= For every node X, key(parent(X)) < key(X)
= Except root node, which has no parent

= Thus, minimum key always at root

= Alternatively, for a "MaxHeap”, always
keep the maximum key at the root

s Insert and deleteMin must maintain
heap-order property
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Heap Order Property

Minimum
element

= Duplicates are allowed

= No order implied for elements which do not
share ancestor-descendant relationship

Cpt S 223. School of EECS, WSU

11



Implementing Complete
i Binary Trees as Arrays

"= Given element at position i in the array\

» Left child(i) = at position 2i
= Right child(i) = at position 2i + 1
\_ = Parent(i) = at position |i/2] Y,

A|B|C|D|E|F |G| H/|I J
0 1 2 3 4 5 6 7 8 9 10 11 12 13
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template <typename Comparable>
class BinaryHeap

{
public:
explicit BinaryHeap( int capacity = 100 );

explicit BinaryHeap( const vector<Comparable> & items ;-
bool isEmpty( ) const;

const Comparable & findMin( ) const;/-
void insert( const Comparable & x ); /-
void deleteMin( );

void deleteMin( Comparable & minItem ); Note: a general delete()
void makeEmpty ( ) function is not as important
for heaps
private: but could be implemented
int currentSize; // Number of elements in heap
vector<Comparable> array; // The heap array

void buildHeap( );
void percolateDown( int hole );

}s
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i Heap Insert

= Insert new element into the heap at the
next available slot (“hole™)

= According to maintaining a complete binary
tree

= Then, "“percolate” the element up the
heap while heap-order property not
satisfied
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Percolating Up

‘L Heap Insert: Example
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Percolating Up

‘L Heap Insert: Example
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Percolating Up

‘L Heap Insert: Example
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Percolating Up

i Heap Insert: Example

W) \/Heap order prop
\.Structure prop

Path of percolation up
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‘L Heap Insert: Implementation

// assume array implementation

void insert( const Comparable &x) {
?

}
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‘L Heap Insert: Implementation

o Co ~ Oy ok N e

i S -
+ W = O

/‘k*

* Insert item x, allowing duplicates.

*/ O(log N) time
void insert( const Comparable & x )

{

if( currentSize == array.size( ) - 1)
array.resize( array.size( ) * 2 );

// Percolate up

int hole = ++currentSize;

for( ; hole > 1 && x < array[ hole / 2 ]; hole /= 2 )
array[ hole ] = array[ hole / 2 ];

array[ hole ] = x;
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i Heap DeleteMin

= Minimum element is always at the root
= Heap decreases by one in size
= Move last element into hole at root

s Percolate down while heap-order
property not satisfied
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Percolating down...

* Heap DeleteMin: Example
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Percolating down...

‘L Heap DeleteMin: Example

N

Copy 31 temporarily
ere and move it dow

Is 31 > min(14,16)7?
*Yes - swap 31 with min(14,16)
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Percolating down...

‘L Heap DeleteMin: Example

19 @
6 (29 () 3

Is 31 > min(19,21)?
*Yes - swap 31 with min(19,21)

N
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Percolating down...

‘L Heap DeleteMin: Example

- I F !
Fl Fl
- ”
’ F
# £
- s
- #
- #
J @ ' @
—_——

199 @ @ @ n DO
65 (29 (32) 31 (65) (26) (32) 31
Is 31 > min(19,21)? Is 31 > min(65,26)?
*Yes - swap 31 with min(19,21) *Yes - swap 31 with min(65,26)

N

Percolating down...
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Percolating down...

‘L Heap DeleteMin: Example
" § ®
D@ »
/

Percolating down...
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Percolating down...

‘L Heap DeleteMin: Example

.
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Heap DeleteMin:
‘L Implementation

/** 14 /**
* Remove the minimum item. 15 * Remove the minimum item and place it in minItem.
* Throws UnderflowException if empty. 16 * Throws UnderflowException if empty.
*/ 17 %/
void deleteMin( ) 18 void deleteMin( Comparable & minItem )
{ 19 {
if( isEmpty( ) ) 20 if( isEmpty( ) )
throw UnderflowException( ); 21 throw UnderflowException( );
22
array[ 1] = array[ currentSize-- ]; 23 minltem = array[ 1 ];
percolateDown( 1 ); 24 array[ 1 ] = array[ currentSize-- ];
} 25 percolateDown( 1 );
26 }
O(log N) time
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Heap DeleteMin:
Implementation

28 /**

29 * Internal method to percolate down in the heap.

30 * hole is the index at which the percolate begins.

31 */

32 void percolateDown( int hole )

33 {

34 int child;

35 Comparable tmp = array[ hole ];

36

37 for( ; hole * 2 <= rentSize; hole = child )

38 { IIIIIIIIIIIIIIII
39 child = hole * 2;

40 if( child !'= currentSize && array[ child + 1 ] < array[ child ] )
41 child++;

42 if( array[ child ] < tmp ) —
43 array[ hole ] = array[ child ];

44 else

45 break;

46 }

47 array[ hole ] = tmp;

48 }
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i Other Heap Operations

s decreaseKey(p,v)
= Lowers the current value of item p to new priority value v
= Need to percolate up
=« E.g., promote a job
s increasekKey(p,v)
= Increases the current value of item p to new priority value v

= Need to percolate down
= E.g., demote a job

B remove(p) Run-times for all three functions?
= First, decreaseKey(p,-)
= Then, deleteMin O(lg n)

= E.g., abort/cancel a job
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i Improving Heap Insert Time

= What if all N elements are all available
upfront?

= T0 build a heap with N elements:
=« Default method takes O(N Ig N) time

= We will now see a new method called buildHeap()
that will take O(N) time - i.e., optimal
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i Building a Heap

= Construct heap from initial set of N items

= Solution 1
= Perform N inserts
= O(N log, N) worst-case

= Solution 2 (use buildHeap())

= Randomly populate initial heap with structure
property

= Perform a percolate-down from each internal node
(H[size/2] to H[1])

= To take care of heap order property
Cpt S 223. School of EECS, WSU 32




BuildHeap Example

Input: { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 }

So, let us look at each

* Arbitrarily assign elements to heap nodes internal node,
« Structure property satisfied from bottom to top,
» Heap order property violated and fix if necessary

 Leaves are all valid heaps (implicit)
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‘L BuildHeap Example

 Randomly initialized heap

 Structure property satisfied

» Heap order property violated

 Leaves are all valid heafst fig3Héitf)ool of EECS, WSU
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* BuildHeap Example
Byl

Dotted lines show path of percolating down
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BuildHeap Example -

Dotted lines show path of percolating down
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‘L BuildHeap Example

Final Heap

Dotted lines show path of percolating down
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BuildHeap Implementation

1 explicit BinaryHeap( const vector<Comparable> & items )
2 : array( items.size( ) + 10 ), currentSize( items.size( ) )
3 {

4 for( int i = 0; i < items.size( ); i++ )

5 array[ i + 1] = items[ i ];

6 buildHeap( );

7 }

8

9 /**
10 * Establish heap order property from an arbitrary
11 * arrangement of items. Runs in linear time.
12 */
13 void buildHeap( )
14 {
15 for( int i = currentSize / 2; i > 0; i--)
16 percolateDown( i );
17 }
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BuildHeap() : Run-time

i Analysis

= Run-time =7

= O(sum of the heights of all the internal nodes)
because we may have to percolate all the way
down to fix every internal node in the worst-case

= Theorem 6.1 How?

« For a perfect binary tree of height h, the sum of
heights of all nodes is 2'*1 — 1 —(h + 1)

= Since A=/g N, then sum of heights is O(N)
= Will be slightly better in practice

Implication: Each insertion costs O(1) amortized time
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Binary Heap Operations
i Worst-case Analysis

Height of heap is |log, N |

insert: O(lg N) for each insert

=« In practice, expect less

buildHeap insert: O(N) for N inserts
deleteMin: O(lg N)

decreaseKey: O(Ig N)

increaseKey: O(Ig N)

remove: O(lg N)

Cpt S 223. School of EECS, WSU
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i Applications

= Operating system scheduling
= Process jobs by priority

= Graph algorithms
= Find shortest path

s Event simulation

= Instead of checking for events at each time
click, look up next event to happen
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An Application:
i The Selection Problem

= Given a list of n elements, find the kt"
smallest element

= Algorithm 1.
= Sort the list => O(nlog n)
= Pick the kth element => O(1)

= A better algorithm:
=« Use a binary heap (minheap)

Cpt S 223. School of EECS, WSU
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i Selection using a MinHeap

= Input: n elements

1. buildHeap(n) . ==> 0(n)
> Perform k deleteMin() operations |  ==> O(k log n)
s Report the kth deleteMin output ==> 0(1)

_____________________________________________________________________

Total run-time = O(n + k log n)

If k = O(n/log n) then the run-time becomes O(n)

Cpt S 223. School of EECS, WSU

44



i Other Types of Heaps

= Binomial Heaps

= d-Heaps
= Generalization of binary heaps (ie., 2-Heaps)

= |eftist Heaps

= Supports merging of two heaps in o(m+n) time (ie., sub-
linear)

= Skew Heaps
= O(log n) amortized run-time

= Fibonacci Heaps
Cpt S 223. School of EECS, WSU
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i Run-time Per Operation

Insert

DeleteMin

Merge (=H;+H,)

Leftist Heap O(log n)

O(log n)

O(log n)

Skew Heap O(log n)

O(log n)

O(log n)

Fibonacci Heap | O(1)

Cpt S 223. School of EECS, WSU
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Priority Queues in STL

s Uses Binary heap

_ #include <priority queue>

= Default is MaxHeap |int main O
{

= Methods priority_queue<int> Q;

Q.push (10);
= Push, top, pop, cout << Q.top Q):
empty, clear Q.pop O;

} ~__

Calls DeleteMax()

For MinHeap: declare priority _queue as:
priority _queue<int, vector<int>, greater<int>> Q;

Refer to Book Chapter 6, Fig 6.57 for an example

Cpt S 223. School of EECS, WSU
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Binomial Heaps
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Binomial Heap

= A binomial heap is a forest of heap-ordered
binomial trees, satisfying:
i) Structure property, and
ii) Heap order property

= A binomial heap is different from binary heap
in that:

« Its structure property is totally different

= Its heap-order property (within each binomial
tree) is the same as in a binary heap
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Note: A binomial tree need not be a binary tree

i Definition: A “Binomial Tree” B,

= A binomial tree of height kis called B,:

= It has 24 nodes
= The number of nodes at depth d = ()

(%) is the form of the co-efficients in binomial theorem

Depth: B.: #nodes:
d=0— “\ — ()
d=1— %\Q 2 — )
d=2 o QO —(5)
d=3— & ()
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What will a Binomial Heap with n=31
nodes look like?

= We know that:

i) A binomial heap should be a forest of binomial
trees

ii) Each binomial tree has power of 2 elements
= S0 how many binomial trees do we need?

B,B; B,B; B,

n=31=(11111),
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iA Binomial Heap w/ n=31 nodes

B,B; B,B; B,

n=31=(11111),

Forest of binomial trees {B,, B,, B,, B3, B, }




Binomial Heap Property

= Lemma: There exists a binomial heap for every
positive value of n

= Proof:

= All values of 7 can be represented in binary representation

= Have one binomial tree for each power of two with co-efficient
of 1

= Eg., =10 ==> (1010), ==> forest contains {B;, B,}
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Binomial Heaps: Heap-Order
i Property

= Each binomial tree should contain the
minimum element at the root of every
subtree
= Just like binary heap, except that the tree

here is a binomial tree structure (and not a
complete binary tree)

= The order of elements across binomial
trees is irrelevant
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Definition: Binomial Heaps

= A binomial heap of n nodes is:

= (Structure Property) A forest of binomial trees as dictated by
the binary representation of n

« (Heap-Order Property) Each binomial tree is a min-heap or a
max-heap
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‘L Binomial Heaps: Examples

Two different heaps:

% %aa

)

&

Cpt S 223. School of EECS, WSU
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Key Properties

= Could there be multiple trees of the same height in a

binomial heap? -

= What is the upper bound on the number of binomial

trees in a binomial heap of 7 nodes? 4

= Given 5, can we tell (for sure) if B, exists?

B, exists if and only if:
the k" least significant bit is 1

In the binary representation of n
Cpt S 223. School of EECS, WSU 57



An Implementation of a Binomial Heap

Maintain a linked list of
tree pointers (for the forest)

Example: n=13 == (1101), /\

Shown using the
left-child, right-sibling pointer method

Analogous to a bit-based representation of a
binary number n

Cpt S 223. School of EECS, WSU
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i Binomial Heap: Operations

s X <= DeleteMin()
= Insert(x)

= Merge(H,, H,)

Cpt S 223. School of EECS, WSU
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i DeleteMin()

Goal: Given a binomial heap, H, find the
minimum and delete it

Observation: The root of each binomial tree
in H contains its minimum element

Approach: Therefore, return the minimum of
all the roots (minimums)

Complexity: O(log n) comparisons
(because there are only O(log n) trees)
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‘L FindMin() & DeleteMin() Example

B, B, B,

For DeleteMin(): After delete, how to adjust the heap?

New Heap : Merge { By, B,} & { B,, B,’, B,’ }

Cpt S 223. School of EECS, WSU
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i Insert(x) in Binomial Heap

s Goal: To insert a new element xinto a
binomial heap H

x Observation:

= Element x can be viewed as a single
element binomial heap
= => Insert (H,x) == Merge(H, {x})

So, if we decide how to do merge we will automatically
figure out how to implement both insert() and deleteMin()
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i Merge(H,,H,)

= Let n; be the number of nodes in H,
= Let n, be the number of nodes in H,

= Therefore, the new heap is going to have n, + n,
nodes
= Assumen=n; +n,

= Logic:

Merge trees of same height, starting from lowest height
trees

If only one tree of a given height, then just copy that

Otherwise, need to do carryover (just like adding two binary
numbers)
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Idea: merge tree of same heights

?
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How to Merge Two Binomial
‘L Trees of the Same Height?

B.: Ba:

I

vy
N

+

e &
) )

6

&
@@
\
©
()

©

/**
* Return the result of merging equal-sized tl and t2.
*/
BinomialNode * combineTrees( BinomialNode *t1, BinomialNode *t2 )
{
if( t2->element < tl->element )
return combineTrees( t2, t1 );
t2->nextSibling = tl->leftChild;
tl->1eftChild = t2;
return tl;

}

Simply compare the roots

~ O WO 00 N Oy R W N =

bt

Note: Merge is defined for only bipamal &aes withdggame height 65




| Merge(Hqu) example carryover
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How to Merge more than two
i binomial trees of the same height?

= Merging more than 2 binomial trees of
the same height could generate carry-
overs

© . @ 1 .
@@ ?
(65) (65)

Merge any two and leave the third as carry-over
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There are two other possible answers

Merge coste<« log(max{n,,n,}) = O(log n) comparisons
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Run-time Complexities

u naffectedi

. affected
K_H !

10010111
1

______________

10011000

Merge takes O(log n) comparisons

Corollary:

=« Insert and DeleteMin also take O(log n)

It can be further proved that an uninterrupted sequence of m
Insert operations takes only O(m) time per operation, implying
O(1) amortize time per insert

= Proof Hint:
= For each insertion, if /is the least significant bit position with a 0, then
number of comparisons required to do the next insert is /+1
= If you count the #bit flips for each insert, going from insert of the first

element to the insert of the last (nt") element, then
=> amortized run-time of O(1) per insert
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Binomial Queue Run-time
i Summary

= Insert
= O(lg n) worst-case

= O(1) amortized time if insertion is done in an
uninterrupted sequence (i.e., without being
intervened by deleteMins)

= DeleteMin, FindMin
= O(lg n) worst-case
= Merge
= O(lg n) worst-case

Cpt S 223. School of EECS, WSU
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i Run-time Per Operation

Insert

DeleteMin

Merge (=H;+H,)

Leftist Heap O(log n)

O(log n)

O(log n)

Skew Heap O(log n)

O(log n)

O(log n)

Fibonacci Heap | O(1)

Cpt S 223. School of EECS, WSU
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:L Summary

= Priority queues maintain the minimum
or maximum element of a set

= Support O(log N) operations worst-case
= insert, deleteMin, merge

= Many applications in support of other
algorithms
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