
Priority Queues (Heaps)Priority Queues (Heaps)

111111Cpt S 223. School of EECS, WSU

Motivation
 Queues are a standard mechanism for ordering tasks

on a first-come, first-served basis
 However, some tasks may be more important or

timely than others (higher priority)
 Priority queues Priority queues

 Store tasks using a partial ordering based on priority
 Ensure highest priority task at head of queue

 Heaps are the underlying data structure of priority
queues

22222Cpt S 223. School of EECS, WSU

Priority Queues: Specification
 Main operations

 insert (i.e., enqueue)
D i i t Dynamic insert

 specification of a priority level (0-high, 1,2.. Low)
 deleteMin (i.e., dequeue)

 Finds the current minimum element (read: “highest priority”) in
the queue, deletes it from the queue, and returns it

 Performance goal is for operations to be “fast”

3Cpt S 223. School of EECS, WSU

Using priority queues

5 3
10

13

19
4

13 8
2211

insert()

deleteMin()

2
Dequeues the next element
with the highest prioritywith the highest priority

4Cpt S 223. School of EECS, WSU

Can we build a data structure better suited to store and retrieve priorities?

Simple Implementations
 Unordered linked list

 O(1) insert
 O(n) deleteMin

5 2 10 3…

 O(n) deleteMin
 Ordered linked list

 O(n) insert
O(1) d l t Mi

2 3 5 10…

 O(1) deleteMin
 Ordered array

 O(lg n + n) insert

2 3 5 … 10

 O(n) deleteMin
 Balanced BST

 O(log2n) insert and deleteMin O(log2n) insert and deleteMin

55Cpt S 223. School of EECS, WSU

Bi HBinary Heap

A priority queue data structure

6Cpt S 223. School of EECS, WSU

Binary Heap

 A binary heap is a binary tree with two
propertiesproperties
 Structure property
 Heap-order property Heap order property

7Cpt S 223. School of EECS, WSU

Structure Property

 A binary heap is a complete binary tree
 Each level (except possibly the bottom most level) (p p y)

is completely filled
 The bottom most level may be partially filled

(f l ft t i ht)(from left to right)

 Height of a complete binary tree with N
elements is  N2log

88Cpt S 223. School of EECS, WSU

Structure property

Binary Heap Example

N=10

Every level
(except last)
saturated

Array representation:

9Cpt S 223. School of EECS, WSU

Heap-order Property

 Heap-order property (for a “MinHeap”)
 For every node X key(parent(X)) ≤ key(X) For every node X, key(parent(X)) ≤ key(X)
 Except root node, which has no parent

Thus minimum key always at root Thus, minimum key always at root
 Alternatively, for a “MaxHeap”, always

keep the maximum key at the rootkeep the maximum key at the root

 Insert and deleteMin must maintain
heap order propertyheap-order property

10Cpt S 223. School of EECS, WSU

Heap Order Property
Minimum
element 

   

   

 Duplicates are allowed

  

 Duplicates are allowed
 No order implied for elements which do not

share ancestor-descendant relationshipshare ancestor descendant relationship

11Cpt S 223. School of EECS, WSU

Implementing Complete
Binary Trees as Arrays

 Given element at position i in the array
 Left child(i) = at position 2i Left child(i) at position 2i
 Right child(i) = at position 2i + 1
 Parent(i) = at position  2/i Parent(i) = at position  2/i

2i

2i + 1

i

i/2

12

i/2

Cpt S 223. School of EECS, WSU

Just finds the Min

insert

Just finds the Min
without deleting it

deleteMin

Note: a general delete()
function is not as important
for heaps
but could be implemented

Stores the heap as
a vector

Fix heap after

13

p
deleteMin

Cpt S 223. School of EECS, WSU

Heap Insert

 Insert new element into the heap at the
next available slot (“hole”)next available slot (hole)
 According to maintaining a complete binary

tree

 Then, “percolate” the element up the
heap while heap-order property notheap while heap order property not
satisfied

14Cpt S 223. School of EECS, WSU

Percolating Up

Heap Insert: Example

Insert 14:

hole14

15Cpt S 223. School of EECS, WSU

Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

hole

14

14

1616Cpt S 223. School of EECS, WSU

Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

(2)
hole

14

14
(2)

14 vs. 21

14

1717Cpt S 223. School of EECS, WSU

Percolating Up

Heap Insert: Example

Insert 14:
(1)

14 vs. 31

hole14
(2)

(3)
14 13

Heap order prop
St t

14

(2)
14 vs. 21

14 vs. 13 Structure prop

Path of percolation up

18

p p

18Cpt S 223. School of EECS, WSU

Heap Insert: Implementation
// assume array implementation
void insert(const Comparable &x) {
??
}

19Cpt S 223. School of EECS, WSU

Heap Insert: Implementation

O(log N) timeO(log N) time

2020Cpt S 223. School of EECS, WSU

Heap DeleteMin

 Minimum element is always at the root
 Heap decreases by one in size Heap decreases by one in size
 Move last element into hole at root

l d h l h d Percolate down while heap-order
property not satisfied

21Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

Make this
position
empty

22Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

Copy 31 temporarily
here and move it dow

Is 31 > min(14,16)?
•Yes - swap 31 with min(14,16)

Make this
position
empty

2323Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

31

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)

24Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

31

31

Is 31 > min(65,26)?
•Yes - swap 31 with min(65,26)

Is 31 > min(19,21)?
•Yes - swap 31 with min(19,21)

25
Percolating down…

25Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

31

26
Percolating down…

Cpt S 223. School of EECS, WSU

Percolating down…

Heap DeleteMin: Example

31

Heap order prop
Structure prop

27

Structure prop

27Cpt S 223. School of EECS, WSU

Heap DeleteMin:
Implementation

28

O(log N) time
Cpt S 223. School of EECS, WSU

Heap DeleteMin:
Implementation

Percolate

Left child

down

Right child

Pick child to
swap with

29Cpt S 223. School of EECS, WSU

Other Heap Operations
 decreaseKey(p,v)

 Lowers the current value of item p to new priority value v
 Need to percolate upp p
 E.g., promote a job

 increaseKey(p,v)
 Increases the current value of item p to new priority value vp p y
 Need to percolate down
 E.g., demote a job

 remove(p) Run-times for all three functions?(p)
 First, decreaseKey(p,-∞)
 Then, deleteMin
 E.g., abort/cancel a job

O(lg n)

30Cpt S 223. School of EECS, WSU

Improving Heap Insert Time

 What if all N elements are all available
upfront?

 To build a heap with N elements:p
 Default method takes O(N lg N) time
 We will now see a new method called buildHeap()

h ll k () lthat will take O(N) time - i.e., optimal

31Cpt S 223. School of EECS, WSU

Building a Heap

 Construct heap from initial set of N items
 Solution 1

 Perform N inserts
 O(N log2 N) worst-case

 Solution 2 (use buildHeap())
 Randomly populate initial heap with structure

property
 Perform a percolate-down from each internal node

(H[size/2] to H[1])(H[size/2] to H[1])
 To take care of heap order property

32Cpt S 223. School of EECS, WSU

BuildHeap Example
I { 150 80 40 10 70 110 30 120 140 60 50 130 100 20 90 }Input: { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 }

Leaves are allLeaves are all
valid heaps
(implicitly)

• Arbitrarily assign elements to heap nodes
• Structure property satisfied
• Heap order property violated

So, let us look at each
internal node,
from bottom to top,
and fix if necessary

33

p p p y
• Leaves are all valid heaps (implicit)

and fix if necessary

Cpt S 223. School of EECS, WSU

BuildHeap Example
Swap

Nothing
to do

with left
child

• Randomly initialized heap

34

y p
• Structure property satisfied
• Heap order property violated
• Leaves are all valid heaps (implicit) 34Cpt S 223. School of EECS, WSU

BuildHeap Example Swap
with right

childNothing
to do

Dotted lines show path of percolating down

35

p p g

35Cpt S 223. School of EECS, WSU

Swap with

BuildHeap Example
Nothing

p
right child

& then with 60

Nothing
to do

Dotted lines show path of percolating down

36

p p g

Cpt S 223. School of EECS, WSU

BuildHeap Example

Swap path

Dotted lines show path of percolating down

Final Heap

37

p p g

Cpt S 223. School of EECS, WSU

BuildHeap Implementation

Start with
lowest,
rightmost
i l d

38

internal node

Cpt S 223. School of EECS, WSU

BuildHeap() : Run-time
Analysis
 Run-time = ?

 O(sum of the heights of all the internal nodes)
b h t l t ll thbecause we may have to percolate all the way
down to fix every internal node in the worst-case

 Theorem 6.1 HOW?

 For a perfect binary tree of height h, the sum of
heights of all nodes is 2h+1 – 1 – (h + 1)

Si h l N th f h i ht i O(N) Since h=lg N, then sum of heights is O(N)
 Will be slightly better in practice

Implication: Each insertion costs O(1) amortized time
39Cpt S 223. School of EECS, WSU

40Cpt S 223. School of EECS, WSU

Binary Heap Operations
Worst-case Analysis

 Height of heap is
 insert: O(lg N) for each insert

 N2log
(g)

 In practice, expect less

 buildHeap insert: O(N) for N insertsp ()
 deleteMin: O(lg N)
 decreaseKey: O(lg N)decreaseKey: O(lg N)
 increaseKey: O(lg N)
 remove: O(lg N) remove: O(lg N)

41Cpt S 223. School of EECS, WSU

Applications

 Operating system scheduling
 Process jobs by priority Process jobs by priority

 Graph algorithms
Find shortest path Find shortest path

 Event simulation
 Instead of checking for events at each time

click, look up next event to happen

42Cpt S 223. School of EECS, WSU

An Application:
The Selection Problem

 Given a list of n elements, find the kth

smallest element

 Algorithm 1:Algorithm 1:
 Sort the list => O(n log n)
 Pick the kth element => O(1) ()

 A better algorithm:
 Use a binary heap (minheap)Use a binary heap (minheap)

43Cpt S 223. School of EECS, WSU

Selection using a MinHeap

 Input: n elements
 Algorithm:

b ildHeap(n) > O(n)1. buildHeap(n) ==> O(n)
2. Perform k deleteMin() operations ==> O(k log n)
3. Report the kth deleteMin output ==> O(1)

Total run-time = O(n + k log n)

If k = O(n/log n) then the run-time becomes O(n)

44Cpt S 223. School of EECS, WSU

Other Types of Heaps
 Binomial Heaps

d H d-Heaps
 Generalization of binary heaps (ie., 2-Heaps)

 Leftist Heaps
 Supports merging of two heaps in o(m+n) time (ie., sub-

linear)
 Skew Heaps

 O(log n) amortized run-time

 Fibonacci Heaps
45Cpt S 223. School of EECS, WSU

Run-time Per Operation
Insert DeleteMin Merge (=H1+H2)

Binary heap  O(log n) worst-case O(log n) O(n)
 O(1) amortized for
buildHeap

Leftist Heap O(log n) O(log n) O(log n)

Skew Heap O(log n) O(log n) O(log n)

Bi i l O(l) t O(l) O(l)Binomial
Heap

 O(log n) worst case
 O(1) amortized for
sequence of n inserts

O(log n) O(log n)

Fibonacci Heap O(1) O(log n) O(1)
46Cpt S 223. School of EECS, WSU

Priority Queues in STL

 Uses Binary heap
 Default is MaxHeap

#include <priority_queue>
int main ()p

 Methods
 Push, top, pop,

{
priority_queue<int> Q;
Q.push (10);
cout << Q top ();, p, p p,

empty, clear
cout << Q.top ();
Q.pop ();

}
Calls DeleteMax()

For MinHeap: declare priority_queue as:
priority_queue<int, vector<int>, greater<int>> Q;

47

Refer to Book Chapter 6, Fig 6.57 for an example

Cpt S 223. School of EECS, WSU

Binomial Heaps

48Cpt S 223. School of EECS, WSU

Binomial Heap
 A binomial heap is a forest of heap-ordered

binomial trees, satisfying:
i) Structure property andi) Structure property, and
ii) Heap order property

 A binomial heap is different from binary heap
in that:
 Its structure property is totally different Its structure property is totally different
 Its heap-order property (within each binomial

tree) is the same as in a binary heap

49Cpt S 223. School of EECS, WSU

Note: A binomial tree need not be a binary tree

Definition: A “Binomial Tree” Bk

 A binomial tree of height k is called Bk:
 It has 2k nodes
 The number of nodes at depth d = ()k

d

() is the form of the co-efficients in binomial theoremk() is the form of the co-efficients in binomial theorem d

d 0 (3)
Depth: #nodes:B3:

d=0
d=1
d=2

(0)
(3

1)
(3)d=2

d=3
(2)
(3

3)
50Cpt S 223. School of EECS, WSU

What will a Binomial Heap with n=31What will a Binomial Heap with n 31
nodes look like?

 We know that:
i) A binomial heap should be a forest of binomial

trees
ii) Each binomial tree has power of 2 elements

S h bi i l d d?

31 (1 1 1 1 1)
B0B1B2B3B4

 So how many binomial trees do we need?

n = 31 = (1 1 1 1 1)2

51Cpt S 223. School of EECS, WSU

A Bi i l H / 31 dA Binomial Heap w/ n=31 nodes
B0B1B2B3B4

n = 31 = (1 1 1 1 1)2

B0B1B2B3B4

Bi == Bi-1 + Bi-1

1,
B

2,
B

3,
B

4
}

B2B3

B1
B0

tre
es

 {B
0,

B
1

B2B3

st
 o

f b
in

om
ia

l
Fo

re
s

52Cpt S 223. School of EECS, WSU

Binomial Heap Property
 Lemma: There exists a binomial heap for every

positive value of n

 Proof:
 All values of n can be represented in binary representation All values of n can be represented in binary representation

 Have one binomial tree for each power of two with co-efficient
of 1

 Eg., n=10 ==> (1010)2 ==> forest contains {B3, B1} Eg., n 10 > (1010)2 > forest contains {B3, B1}

53Cpt S 223. School of EECS, WSU

Binomial Heaps: Heap-Order
Property
 Each binomial tree should contain the

minimum element at the root of every y
subtree
 Just like binary heap, except that the tree

h i bi i l t t t (d there is a binomial tree structure (and not a
complete binary tree)

 The order of elements across binomial
trees is irrelevanttrees is irrelevant

54Cpt S 223. School of EECS, WSU

Definition: Binomial Heaps
 A binomial heap of n nodes is:

 (Structure Property) A forest of binomial trees as dictated by
the binary representation of nthe binary representation of n

 (Heap-Order Property) Each binomial tree is a min-heap or a
hmax-heap

55Cpt S 223. School of EECS, WSU

Binomial Heaps: Examples

Two different heaps:

56Cpt S 223. School of EECS, WSU

Key Properties
 Could there be multiple trees of the same height in a

binomial heap?
no

 What is the upper bound on the number of binomial
trees in a binomial heap of n nodes? ltrees in a binomial heap of n nodes? lg n

 Given n, can we tell (for sure) if Bk exists?

Bk exists if and only if:k y
the kth least significant bit is 1
in the binary representation of n

57Cpt S 223. School of EECS, WSU

An Implementation of a Binomial Heapp p

Example: n=13 == (1101)

Maintain a linked list of
tree pointers (for the forest)

B0B1B2B3B4B5B6B7

Example: n=13 == (1101)2

Shown using the
left child right sibling pointer method

Analogous to a bit-based representation of a

left-child, right-sibling pointer method

g p
binary number n

58Cpt S 223. School of EECS, WSU

Binomial Heap: Operations

 x <= DeleteMin()

 Insert(x)

 Merge(H1, H2)

59Cpt S 223. School of EECS, WSU

DeleteMin()

 Goal: Given a binomial heap, H, find the
minimum and delete it

 Observation: The root of each binomial tree
in H contains its minimum element

 Approach: Therefore, return the minimum of
all the roots (minimums)

 Complexity: O(log n) comparisons
(because there are only O(log n) trees)

60Cpt S 223. School of EECS, WSU

FindMin() & DeleteMin() Example

B0 B2
B3

B1’ B2’B0’

For DeleteMin(): After delete, how to adjust the heap?

New Heap : Merge { B B } & { B ’ B ’ B ’ }New Heap : Merge { B0, B2 } & { B0 , B1 , B2 }

61Cpt S 223. School of EECS, WSU

Insert(x) in Binomial Heap

 Goal: To insert a new element x into a
binomial heap Hbinomial heap H

 Observation:
Element x can be viewed as a single Element x can be viewed as a single
element binomial heap
 => Insert (H x) == Merge(H, {x}) > Insert (H,x) Merge(H, {x})

So, if we decide how to do merge we will automatically
figure out how to implement both insert() and deleteMin()

62Cpt S 223. School of EECS, WSU

Merge(H1,H2)
 Let n1 be the number of nodes in H1
 Let n2 be the number of nodes in H2
 Therefore the new heap is going to have n + n Therefore, the new heap is going to have n1 + n2

nodes
 Assume n = n1 + n2

 Logic:
 Merge trees of same height, starting from lowest height

treestrees
 If only one tree of a given height, then just copy that
 Otherwise, need to do carryover (just like adding two binary

numbers)

63Cpt S 223. School of EECS, WSU

Idea: merge tree of same heights

Merge: Example

+

B0 B1 B2

13 ? ? 64Cpt S 223. School of EECS, WSU

How to Merge Two Binomial
Trees of the Same Height?

+
B2:

B2: B3:

Simply compare the roots

Note: Merge is defined for only binomial trees with the same height 65Cpt S 223. School of EECS, WSU

Merge(H H) exampleMerge(H1,H2) example
carryover

+

13 14

16

?

26 16

26
66Cpt S 223. School of EECS, WSU

How to Merge more than twog
binomial trees of the same height?

 Merging more than 2 binomial trees of
the same height could generate carry-g g y
overs

+ +
14

?+
26 16

26

?

Merge any two and leave the third as carry-overMerge any two and leave the third as carry over

67Cpt S 223. School of EECS, WSU

Input:

+

Merge(H1,H2) : Example

Output:

There are t o other possible ans ersThere are two other possible answers

Merge cost log(max{n1 n2}) = O(log n) comparisonsMerge cost log(max{n1,n2}) = O(log n) comparisons

68Cpt S 223. School of EECS, WSU

Run-time Complexities
 Merge takes O(log n) comparisons

 Corollary: Corollary:
 Insert and DeleteMin also take O(log n)

 It can be further proved that an uninterrupted sequence of m It can be further proved that an uninterrupted sequence of m
Insert operations takes only O(m) time per operation, implying
O(1) amortize time per insert
 Proof Hint:

 For each insertion, if i is the least significant bit position with a 0, then
number of comparisons required to do the next insert is i+1

 If you count the #bit flips for each insert, going from insert of the first
element to the insert of the last (nth) element, then

> amortized run time of O(1) per insert10010111
affected

unaffected

=> amortized run-time of O(1) per insert10010111
1

10011000

69Cpt S 223. School of EECS, WSU

Binomial Queue Run-time
Summary
 Insert

 O(lg n) worst-case
 O(1) amortized time if insertion is done in an

uninterrupted sequence (i.e., without being
intervened by deleteMins)

 DeleteMin, FindMin
 O(lg n) worst-case

 Merge
 O(lg n) worst-case

70Cpt S 223. School of EECS, WSU

Run-time Per Operation
Insert DeleteMin Merge (=H1+H2)

Binary heap  O(log n) worst-case O(log n) O(n)
 O(1) amortized for
buildHeap

Leftist Heap O(log n) O(log n) O(log n)

Skew Heap O(log n) O(log n) O(log n)

Bi i l O(l) t O(l) O(l)Binomial
Heap

 O(log n) worst case
 O(1) amortized for
sequence of n inserts

O(log n) O(log n)

Fibonacci Heap O(1) O(log n) O(1)
71Cpt S 223. School of EECS, WSU

Summary

 Priority queues maintain the minimum
or maximum element of a setor maximum element of a set

 Support O(log N) operations worst-case
insert deleteMin merge insert, deleteMin, merge

 Many applications in support of other
l ithalgorithms

72Cpt S 223. School of EECS, WSU

